An Ultra-Fast Metabolite Prediction Algorithm

نویسندگان

  • Zheng Rong Yang
  • Murray Grant
چکیده

Small molecules are central to all biological processes and metabolomics becoming an increasingly important discovery tool. Robust, accurate and efficient experimental approaches are critical to supporting and validating predictions from post-genomic studies. To accurately predict metabolic changes and dynamics, experimental design requires multiple biological replicates and usually multiple treatments. Mass spectra from each run are processed and metabolite features are extracted. Because of machine resolution and variation in replicates, one metabolite may have different implementations (values) of retention time and mass in different spectra. A major impediment to effectively utilizing untargeted metabolomics data is ensuring accurate spectral alignment, enabling precise recognition of features (metabolites) across spectra. Existing alignment algorithms use either a global merge strategy or a local merge strategy. The former delivers an accurate alignment, but lacks efficiency. The latter is fast, but often inaccurate. Here we document a new algorithm employing a technique known as quicksort. The results on both simulated data and real data show that this algorithm provides a dramatic increase in alignment speed and also improves alignment accuracy.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ultra-Fast Image Reconstruction of Tomosynthesis Mammography Using GPU

Digital Breast Tomosynthesis (DBT) is a technology that creates three dimensional (3D) images of breast tissue. Tomosynthesis mammography detects lesions that are not detectable with other imaging systems. If image reconstruction time is in the order of seconds, we can use Tomosynthesis systems to perform Tomosynthesis-guided Interventional procedures. This research has been designed to study u...

متن کامل

Ultra-Fast Shapelets for Time Series Classification

Time series shapelets are discriminative subsequences and their similarity to a time series can be used for time series classification. Since the discovery of time series shapelets is costly in terms of time, the applicability on long or multivariate time series is difficult. In this work we propose Ultra-Fast Shapelets that uses a number of random shapelets. It is shown that Ultra-Fast Shapele...

متن کامل

A Fast Block Size Decision For Intra Coding in HEVC Standard

Intra coding in High efficiency video coding (HEVC) can significantly improve the compression efficiency using 35 intra-prediction modes for 2N×2N (N is an integer number ranging from six to two) luma blocks. To find the luma block with the minimum rate-distortion, it must perform 11932 different rate-distortion cost calculations. Although this approach improves coding efficiency compared to th...

متن کامل

A Fast Block Size Decision For Intra Coding in HEVC Standard

Intra coding in High efficiency video coding (HEVC) can significantly improve the compression efficiency using 35 intra-prediction modes for 2N×2N (N is an integer number ranging from six to two) luma blocks. To find the luma block with the minimum rate-distortion, it must perform 11932 different rate-distortion cost calculations. Although this approach improves coding efficiency compared to th...

متن کامل

Application of graphene-based solid-phase extraction for ultra-fast determination of malachite green and its metabolite in fish tissues.

An ultra-fast analytical protocol using graphene-based solid-phase extraction coupled with ultra-performance liquid chromatography-tandem mass spectrometry for the rapid determination of malachite green and its metabolite, leucomalachite green in fish tissues has been developed. In the present work, graphene was synthesized and evaluated as novel solid-phase extraction sorbents for the analytes...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2012